Phytoplankton physiologyARMS fig 1

In aquatic systems, phytoplankton acclimate to dynamic ranges of external resource concentrations that influence rates of primary productivity. Underlying environmental acclimation are metabolic shifts that reallocate carbon and energetic currencies through a variety of pathways to balance resource availability and growth. We track the distribution of carbon and energy through the primary metabolic pathways leading to net carbon accumulation (net growth). This approach provides a complete accounting of photosynthetic electron flow and reveals growth rate-dependent shifts in photosynthetic product allocation. We recently showed that the basis for these cell behaviors is linked to photosynthetic properties of specific phases of the cell cycle. These behaviors were captured in a mathematical model describing carbon utilization and suggest the intriguing possibility that a single model framework may be used to broadly characterize steady-state phototrophic metabolism.

Recent publications on this topic:

Moore, E.R., Bullington, B.S., Weisberg, A.J., Jiang, Y., Chang, J., and K.H. Halsey. Morphological and transcriptomic evidence of sexual reproduction in Thalassiosira pseudonana and other centric diatoms. BioRxiv doi:

Silsbe, G.M., Behrenfeld, M.J., Halsey, K.H., Milligan, A.J., and T.K. Westberry. The CAFÉ model: An accurate net production model for global ocean phytoplankton. Global Biogeochemical Cycles.

Fisher, N.L. and Halsey, K.H. 2016. Mechanisms that increase the growth efficiency of diatoms in low light. Photosynthesis Research DOI 10.1007/s11120-016-0282-6

Halsey, K.H. and Jones, B.M.  2015.  Phytoplankton Strategies for Photosynthetic Energy Allocation Ann. Rev. of Mar. Sci.  7:265-297.

Halsey, KH, Milligan, AJ, Behrenfeld, MJ.  2014. Contrasting strategies of photosynthetic energy utilization drive lifestyle strategies in ecologically important PicoeukaryotesMetabolites 4(2): 260-280.

Volatile Organic Carbon cycling by planktonSlide1

Some very abundant marine bacterioplankton oxidize low molecular weight volatile organic compounds (VOCs). This discovery led me to ask the question, “are phytoplankton a source of these important compounds?” We recently discovered that phytoplankton produce VOCs that can escape to the atmosphere, where they have significant influences on Earth’s radiative budget and climate. The magnitude of VOC cycling in the oceans could rival that in the atmosphere. This research is now part of a large interdisciplinary project to resolve the biological and environmental factors that drive large annual phytoplankton bloom events and to understand the influence of these bloom events on aerosol formation and climate. My role as Co-PI on this project is to quantify the magnitude of VOC cycling in the marine ecosystem during different phases of the North Atlantic bloom.

Recent publication on this topic:

Halsey, K.H, S.J. Giovannoni, M. Graus, Y. Zhao, Z. Landry,  J.C. Thrash, and J. de Gouw. 2017. Biological cycling of volatile organic carbon by phytoplankton and bacterioplankton. Limnology and Oceanography.  doi: 10.1002/lno.10596

Sun, J., J.D. Todd, J.C. Thrash, M. Qian, Y. Qian, B. Temperton, J. Guo, E.K. Fowler, J. Aldrich, P. De Leenheer, S.H. Payne, A.W.B. Johnston, C. L. Davie-Martin, K.H. Halsey and S.J. Giovannoni. 2016. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nature Microbiology. doi:10.1038/nmicrobiol.2016.65

For more information about the North Atlantic Aerosols and Marine Ecosystems (NAAMES) project go to:

A fun and informative blog from the first NAAMES cruise:

Additional photos from the first NAAMES cruise are in the “Kudos” page.


The Halsey Lab has been fortunate to receive funding for these research projects from: